Day 10 part 2

This commit is contained in:
Araozu 2024-05-02 10:52:33 -05:00
parent 2d02a46cc3
commit 913eac91cd

View File

@ -2,6 +2,7 @@ package solutions
import (
"fmt"
"math/big"
"os"
"slices"
)
@ -24,8 +25,6 @@ func Day10Part01(isTest bool) int {
switch difference {
case 1:
jolt1Difference += 1
case 2:
continue
case 3:
jolt3Difference += 1
default:
@ -38,6 +37,116 @@ func Day10Part01(isTest bool) int {
return jolt1Difference * jolt3Difference
}
// This section assumes that there are no 2-jolt difference connections.
// In my input and the test inputs there were no 2-jolt differences.
func Day10Part02(isTest bool) int {
numbers := ReadAndMapInt("10", isTest)
slices.Sort(numbers)
// The highest jolt value
highestValue := numbers[len(numbers)-1]
// Add the built-in adapter jolt value
numbers = append(numbers, highestValue+3)
// 1. Group all groups of 3 or more consecutive numbers.
counts := groupConsecutiveNumbers(numbers)
// 2. Count the number of paths between these groups
pathCounts := countPathsByConsecutiveNumbers(counts)
// 3. Multiply these number of paths to get the final answer.
answer := big.NewInt(1)
for _, value := range pathCounts {
answer.Mul(answer, big.NewInt(value))
}
fmt.Println("day 10 answer: " + answer.Text(10))
return -1
}
// Returns the length of each group of 3 or more consecutive numbers on the input slice.
//
// E.g.: This input:
//
// 0-3-4-5-9-12-13-14-15-16-19-20
//
// Would split into:
//
// 0 3-4-5 9 12-13-14-15-16 19 20
//
// And then return a slice:
// [3, 5]
// Which contains the length of each group of 3 or more consecutive numbers
func groupConsecutiveNumbers(input []int) []int {
result := make([]int, 0)
previousNumber := 0
consecutiveCount := 1
for _, value := range input {
if value == previousNumber+1 {
consecutiveCount += 1
} else {
// If there was a consecutive group previously, append to the slice
if consecutiveCount >= 3 {
result = append(result, consecutiveCount)
}
// Reset the consecutive count
consecutiveCount = 1
}
previousNumber = value
}
return result
}
// Transforms a slice of amount of consecutive numbers into a slice of path counts
//
// Let x be a single amount of consecutive numbers:
//
// The amount of paths in a group of x numbers equals
// the amount of paths in groups x-1 + x-2 + x-3.
//
// The initial state is as follows:
//
// - when x=1 then paths=1
//
// - when x=2 then paths=1
//
// - when x=3 then paths=2
//
// - when x=2 then paths = 2+1+1 = 4, and so on.
//
// This operation is mapped over every number in the input slice
func countPathsByConsecutiveNumbers(input []int) []int64 {
// Initial state for memoization
pathCount := []int64{1, 1, 2, 4, 7, 13, 24}
result := make([]int64, len(input))
for idx, value := range input {
result[idx] = consecutiveCountToPathCount(value, &pathCount)
}
return result
}
func consecutiveCountToPathCount(consecutiveCount int, pathCountSlice *[]int64) int64 {
currentMaxAmount := len(*pathCountSlice)
// If the index is in the slice, return it
if currentMaxAmount >= consecutiveCount {
return (*pathCountSlice)[consecutiveCount-1]
}
// Otherwise, build the slice up to the index
for i := currentMaxAmount; i < consecutiveCount; i += 1 {
nextValue := (*pathCountSlice)[consecutiveCount-1] + (*pathCountSlice)[consecutiveCount-2] + (*pathCountSlice)[consecutiveCount-3]
*pathCountSlice = append(*pathCountSlice, nextValue)
}
return (*pathCountSlice)[consecutiveCount-1]
}